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ABSTRACT 
This paper discusses the processing of spatial data on MapReduce – Hadoop platform. The Hadoop is known for 

its efficiency, ease of implementation and fault tolerance. The earlier existing technologies for parallel processing, 

such as, Grid Computing also provided fault tolerance, but its implementation using the replica management is 

not easy as compared to the internal replica management in Hadoop. This paper implements a Hadoop-GIS cluster 

for a spatial dataset and a spatial query is implemented in the MapReduce. The experimental run demonstrates the 

effectiveness of Hadoop cluster in terms of the scalability and fault tolerance. 

 

INTRODUCTION  
Over the last several years, huge amount of spatial data has been generated all over the world as a result of 

advancement in the field of GIS and GIS applications. The advancement in computer networks, popularity of 

Internet, reduced costs of storage and processing, and the development of distributed applications has given a pace 

to the generation of data. The spatial data is complex and voluminous due to its characteristics. The huge volume 

of spatial data faced problem on the storage front. The complex and unstructured spatial data was difficult to 

process with traditional sequential programming methods and on traditional GIS software. However, as GIS data 

generated through a wide GIS sources was in different forms and formats, so interoperability was a big issue. Due 

to the interoperability issue, it was very difficult to use the spatial data generated from other GIS agencies.  

 

An early breakthrough for this bottleneck, towards the effective use of spatial data, was provided by Open 

Geospatial Consortium (OGC) [12]. The OGC Web Services enabled the seamless integration of widely 

distributed heterogeneous geo-processing and location services on heterogeneous spatial data. A second 

advancement was provided by the Internet based GIS (Web-GIS). It provided interoperability between different 

GIS platforms and the GIS data to different users. However, the stateless nature of Web-GIS services could not 

provide collaborated environment for complex geospatial processing that required a chain of simple GIS services. 

Later on, the traditional sequential programming environment was also not efficient enough to process the huge 

and voluminous spatial data. It led to adaptation of parallel processing for efficient processing over a set of 

collaborated computer machines.  

 

Integrating spatial databases with Grid Technology provides a solution to the data storage, for the huge volume 

of the spatial data being generated through development of the GIS technology, and heterogeneity of the spatial 

databases. It also provided a parallel task execution environment for efficient processing of spatial data. The 

stateless characteristic of Web-GIS was also solved with the integration of Open Grid Service Infrastructure 

(OGSI), Web Service Description Language (WSDL) and Extended Mark-up Language (XML) [10]. However, 

the state-full information of grid services was integrated with the web services. The Web Service Resource 

Framework (WSRF) provided a solution by keeping two aside [9]. With the evolution of web services, the service 

oriented architecture Open Grid Service Architecture along with the WSRF technology (OGSA)/WSRF became 

popular for grid computing [6, 7]. The development of various grid middleware for specific purposes, such as, for 

spatial data integration in grid, had happened in grid computing. The combination of GIS and Grid Computing, 

Grid-GIS [3] became a new research tendency. A number of OGSA/WSRF based Grid-GIS architectures had been 

proposed in the past. However, on the fault tolerance front, such as the single point of failure of the domain 

manager and the distributed nodes carrying the local data, researches are still going on. The fault tolerance in the 

grid with GT 4.0 is done externally using the Replica Management. It is implemented with replica management 

and catalog management.  
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The emergence of the MapReduce technology had given a new dimension to the fault tolerance problem of the 

Grid-GIS. There is no need to externally configure anything for fault tolerance management, it is provided 

internally. One needs to only provide the number of data-block replicas to be created during execution. The 

MapReduce implementation Hadoop automatically provides fault tolerance of the Domain Manger (Namenode) 

through realizing a Secondary Domain Manager. If the main Domain Manager goes off due to any reason then 

the Seconadry takes its place and the cluster keeps on running. Similarly, it also provides fault tolerance for the 

spatially distributed data on data nodes by creating replicas of the data block chunks in data nodes. In this way, if 

one data node holding a spatial data chunk goes-off due to any reason then this data is retrieved from the other 

data nodes due to replica management policy.   

 

HADOOP AND HADOOP-GIS 
The MapReduce implementation Hadoop [1, 2] is proved excellent for fault tolerance and ease of parallelization. 

The MapReduce is favored over Hadoop for its fault-tolerant, scalable, and parallelization features [4, 5, 8]. The 

optimization of the Hadoop system is presented with the concepts of data locality and redundant execution. Data 

locality is used for reading and writing data to local disc and hence reducing the network overhead and bandwidth. 

Redundant executions are used for map and reduce tasks over slow machines, which cause bottlenecks and slow 

down the whole operation. The MapReduce framework consists of Map and Reduce components that work on 

key-value pair concept. The MapReduce abstracts all the details of parallel processing from users and the users 

get a very simplified framework for programming [13, 14, 15]. The MapReduce has become very popular for 

parallel processing of arbitrary data. It works on divide-and-conquer strategy and breaks a computation into sub-

computations over a set of computers in a cluster that operate in parallel. Each smaller computation is handled 

separately and the result of computation is returned at a central point. 

 

HADOOP-GIS ARCHITECTURE 
The architecture of Hadoop-GIS is the integration of Hadoop and the GIS, as presented in Figure 1. The client 

executes a query, upon the distributed spatial data among the cluster data nodes, through distributed data 

processing module that initiates a Job Tracker. A set of Map and Reduce functions is used for carrying out this 

task. The distributed spatial data among the cluster nodes is managed by the distributed data storage module on 

the HDFS though the Spatial data Handler part of the Domain Manager. The Spatial Data Handler of the Domain 

Manager in consultation with the Spatial Data Handlers of the data nodes creates the HDFS. The Indexer is used 

for indexing the spatial data for organized storage of the spatial data that provides fast data retrieval. During 

execution an HDFS Log is created by the Domain Manager, which is helpful for creating a backup by the 

Secondary Domain Manager. The Secondary Domain Manager creates a replica of the Domain Manager through 

a bidirectional communication with the HDFS Log and the Distributed Data Storage module. The Certification 

Authority (CA) manages the authenticity of the users.  

 

 
Figure 1. Architecture of Hadoop-GIS 
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The two main components of the Domain Manager, Spatial Data Handler and Job Tracker, use data nodes for 

creating the HDFS data storage and for parallel processing of sub-tasks. The data nodes are the computer nodes 

that become part of the Hadoop cluster and participate in providing their storage and the computational resources. 

These data nodes can be added either statically during cluster configuration initially or dynamically on the fly, 

when the cluster is running. The sub-tasks are the decompositions of the main task into smaller parts by the Job 

Tracker. These sub-tasks execute at the Task Tracker of the data nodes. The Task Trackers use the local storage 

of the data node as well as the remote storage of other data nodes through the HDFS. 

 

FACTORS AFFECTING THE PERFORMANCE OF HADOOP CLUSTER 
The following parameters affect the performance of Hadoop cluster. These parameters are a sort of calibrations 

for the Hadoop cluster. The proper calibration of the these parameters provide a better performance. 

 

Partition Function - When the input dataset is put on Hadoop’s HDFS, it is split into data chunks of the size of the 

data blocks on the data nodes with a default value is 64 MB. If data is split in such a way that the map computation 

in a data node does not find the data locally then more data transfers will occur and this will put extra burden on 

the network and also decrease the efficiency of computation. The performance can be increased if input data is 

partitioned in a particular way so as to maximize the data locality then movement of intermediate data generated 

as a result of Map computation over the network can be reduced and consecutively performance can be enhanced. 

Memory Size-As the namespace uses primary memory for building the metadata about the data over the HDFS 

file system. This metadata generally consists of information about the file chunks contained in data blocks on 

different slave nodes over the HDFS. So its size is determined by the size of input dataset. A shortage of RAM on 

name node crashes the job so generally the RAM on the name node is more than the RAM on slave nodes and 

approximately close to one-third of the total memory of the Hadoop cluster. 

 

Block Size-The size of the input dataset and the input split affects the number of Map tasks. Setting the block size 

for the input dataset can configure the splits.  If size of data blocks is kept small then CPU bursts are short and 

upon task completion significant data transfer takes place to collect the intermediate data for the reducers. 

Increasing the data block size and consecutively reducing the number of tasks can reduce this data transfer time. 

However, large data blocks increase the execution time per block and hamper the parallelism. The output of the 

Map task per data block affects the performance of Hadoop cluster if the former is directly proportional on the 

latter. In such a situation, large block size causes map-side spills. 

 

The Number of Map and Reduce Tasks-The Number of Map and Reduce Tasks on the slave nodes is determined 

by the strength of the processor. However, when the processor strength allows many map tasks and many reduce 

tasks then the numbers must be chosen carefully. High Map/Reduce tasks means short CPU burst per Map/Reduce 

computations and low Map/Reduce tasks means large CPU burst per Map/Reduce computations. Number of 

Map/Reduce also relates to the data chunk in each data block and hence to the CPU execution time. If map 

computation is simple then CPU bursts are short but the startup overhead becomes significant as compared to the 

computation and upon task completion intermediate data transfer takes place for data shuffling to partition the 

data among the reducers. Larger CPU burst computations decrease the parallelism feature and hence reduces the 

performance. 

 

Replicas-Providing a fault tolerance system with data replication has been the big characteristics of Hadoop 

cluster. However, it may degrade performance, so a limit must be kept over the number of replication over the 

data blocks. There are several reasons to it. Firstly, creating replicas over a large cluster becomes an expensive 

operation. Secondly, when replicas are created and put on different data blocks then data transfer in the form of 

replica takes place over the network and causes network resource consumption and puts load over the network. 

Thirdly, the generated replicas are put on the data blocks of the slave data nodes and hence consume local disk 

capacity. 
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IMPLEMENTATION AND EXPERIMENTAL EVALUATION 
The implementation of the proposed work was done on ten machines having the following configurations: Dual 

core processor 2.1 GHz, RAM 1 GB, 100 Mbps Ethernet, Ubuntu 11.04, Java-6-openjdk. The Hadoop cluster was 

set-up using the Hadoop 0.21.0. A Hadoop-GIS was set-up as per the architecture discussed in earlier section. 

The mentioned ten computers are taken from the two adjustment laboratories; each manages a start topology and 

interconnected in a LAN and connected via a switch/rack, as shown in Figure 2.  The spatial dataset for the 

experimentation is taken from [11]. A sample of spatial dataset in Comma Separated Value (CSV) form with the 

schema is presented in Table 1. 

 

 
Figure 2. Topology of the Hadoop Cluster 

 

A query is written for counting all the geographical names from the spatial dataset. The query is written in Java 

and run on the Grid-GIS. The following algorithm was used in MapReduce for querying over the distributed 

spatial dataset. The algorithm takes input in CSV file and the data is put on the HDFS. This task is accomplished 

in the MapReduce through the Map and Reduce functions. A number of Map function executes in parallel in the 

cluster and reads the partitioned spatial dataset records. Each Mapper stores one geograpnical name in a variable 

and passes it to the Reducer function. The Reducer function collects similar geographical names and computes 

the total for the entire spatial dataset. 

 

Table 1. Sample data from basetable 040204.csv file [11] 

Geographic 

ID Code 

Geographic 

Name 

Table 

Number 

Table 

Order Stub Estimate 

Lower 

Bound 

Upper 

Bound 

04000US01 Alabama B01001 2 Male: 2122034 2113946 2130122 

04000US01 Alabama B01001 3 Under 5 years 147965 144298 151632 

04000US01 Alabama B01001 4 5 to 9 years 134647 123232 146062 

04000US12 Florida B24010H 19 

Protective 

service 

occupations 99870 88342 111398 

04000US12 Florida B24010H 20 

Food preparation 

and serving 

related 

occupations 117249 106366 128132 
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Algorithm for processing spatial data (.csv format) from [11]  

Input: CSV data for which a sample data is shown in Table 1. 

Output: Counted data on the basis of Geographic Name field of the Sample Database. 

1. Create a job.  

2. Input file(s) is/are read in FileInputOutputFormat line by line till the end of file is reached from HDFS. 

3. A map function (Mapper) reads all the tokens from the file line by line in (key , value) pairs as (LongWritable, 

Text) format and also writes all the line tokens of  the line to a variable itr of type StringTokenizer type. 

4. A loop extracts the tokens from the line written to itr.  

5. A conditional statement extracts only the tokens of second column. 

6. Each token along with its count i.e. (1) is written to the temporary buffer in the form of (Key, Value) pair, 

which acts as input for the Reduce function (Reducer). 

7. Reducer gets shuffled values from the mapper and through iteration generates cumulative sum for the 

occurrence of the key.  

8. Reducer writes for each key the cumulative sum in (Key as Text, Value as IntWritable) in the temporary 

buffer. 

9. This result is finally written to the HDFS. 

 

RESULTS AND DISCUSSIONS 
This section discusses the results obtained for the query run on the Hadoop-GIS for the spatial dataset.   

 

Evaluation of configured capacity of the cluster with the addition of a new node 

The storage of the HDFS in the Hadoop cluster is presented in Figure 3. An increase in the storage capacity ensures 

that the cluster is working fine and each node is contributing its configured capacity in the HDFS cluster. Each 

node is having 160 GB of hard disc space but approximately 145 GB is available after operating system and other 

essential software use the remaining memory. The disk capacity of each node is added to the cluster whenever a 

node becomes part of it. 

 

 
Figure 3.  HDFS configured capacity vs. Hadoop cluster size 

 

Effect of cluster size on execution time 

The performance of Hadoop cluster increases in terms of the overall execution time, as the size of the cluster 

increases by adding nodes in the cluster. Similarly, the execution time of map phase and reduce phase also 

decreases separately with an increase in the size of the cluster as is evident from the Figure 5. A job is distributed 

to subtasks on task trackers and through parallelism all subtasks perform in parallel and minimize the overall 

execution time. 
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Figure 4.  Execution Time vs. Number of nodes 

 

Effect of HDFS Block size on Execution time 

The client machine that puts the data file on the HDFS configures HDFS block size. The block size is also specified 

in the hdfs-site.xml configuration file of Hadoop cluster. Input splits for a data file is set through setting-up the 

block size and the split size also determines the number of Map and Reduce tasks.  It is evident from Figure 5 

that, for each configured block size (64 MB, 128 MB, 256 MB), the execution time for a job decreases with 

increase in the size of the Hadoop cluster. When the same number of nodes is kept fixed, the execution time for 

the job is at minimum and it is 128 MB block size. The execution time decreases when job is switched from a 

cluster with 64 MB block size to 128 MB block size. However, the execution time increases when the job is put 

on a cluster from 128 MB block size to 256 MB block size. It is due to the insufficient java heap memory available 

for the output mapped intermediate data that causes mapped-spill. 

 

The effect of varying the number of data block replicas 

The replica feature in Hadoop takes care of the fault tolerance by replicating data blocks among cluster nodes and 

improves the data availability. We set the number of replica (x) for a data block through the configuration file. It 

was found that when we set x=1 and run the task then sometimes the task completes successfully but for a few 

times the task failed to complete. When we set x=2 then the task runs successfully all the times baring a negligible 

number of times. When we set x=3, then the task takes abnormally longer time. And when we further increase 

x=4, the task does not complete and the machine/cluster is hanged. The reason for this kind of behavior is due to 

the number of replicas of data blocks that influences the execution. When insufficient numbers of replicas are in 

the cluster then sub-tasks fail as data blocks are not found due to locality problem or there are more failures during 

data transfer. In another case, when the numbers of data block replicas are large in number than the size of HDFS 

data becomes large and more data transfer takes place over the network that causes consumption of more network 

resources and puts load over the network and consequently slow down or sometimes even hang the whole system. 

 

 
Figure 5.  Execution time vs. Block size 
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CONCLUSION AND THE FUTURE SCOPE 
This experimental work helps in understanding the significance of the cluster size and the data block size in a 

Hadoop cluster. When cluster grows in size, each node contributes with its data holding capacity of the disk and 

task processing capacity of the processor. A cluster processes a job by decomposing it into subtasks and executing 

these subtasks in parallel and consecutively reducing the execution time. The practical demonstration also 

elaborates the scalability and fault tolerance characteristic of Hadoop. 

 

In future, we wish to work on the Spatial Indexer part of the Domain Manager in Hadoop-GIS. There are many 

traditional spatial indexing algorithms that had been designed and implemented for serial programming models. 

A few of these have high potential for parallelization. Exploring such spatial indexes in the MapReduce will be a 

challenging task.    
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